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We introduce a class of random velocity fields on the periodic lattice and in
discrete time having a certain hidden Markov structure. The generalized
Lagrangian velocity (the velocity field as viewed from the location of a single
moving particle) has similar hidden Markov structure, and its law is found
explicitly. Its rate of convergence to equilibrium is studied in small numerical
examples and in rigorous results giving absolute and relative bounds on the size
of the second–largest eigenvalue modulus. The effect of molecular diffusion on
the rate of convergence is also investigated; in some cases it slows convergence
to equilibrium. After repeating the velocity field periodically throughout the
integer lattice, it is shown that, with the usual diffusive rescaling, the single–
particle motion converges to Brownian motion in both compressible and
incompressible cases. An exact formula for the effective diffusivity is given and
numerical examples are shown.

KEY WORDS: Lagrangian velocity; Lagrangian observations; discrete velocity;
hidden Markov model; homogeneous turbulence.

1. INTRODUCTION

A fundamental and longstanding problem in statistical fluid mechanics is
this: given a random velocity field U having a known probability law,
determine the law of motion of a single particle moved by U, with or
without the additional influence of molecular diffusion. This article intro-
duces velocity fields in discrete space and time for which one may explicitly
write down the probability law of the particle’s velocity and thus obtain the
probability law of the particle’s motion. These models are well adapted to



doing exact numerical calculations of Lagrangian statistics, rather than
simulating, as is usually done.

We begin with the continuous space–time setting of the problem. Let
U={U(x, t), x ¥ Rd, t \ 0} be a random vector field taking values in Rd.
Think of U as a velocity field and consider the motion of a particle whose
position satisfies the trajectory equation

dXt

dt
=U(Xt, t), t > 0,(1.1)

assuming sufficient smoothness of U. If molecular diffusion is desired,
consider instead the stochastic differential equation

dXt=U(Xt, t) dt+s(Xt, t) dWt, t > 0,(1.2)

where s is the molecular diffusivity and W is a Wiener process independent
of U.

The fundamental problem is to determine the law of the particle’s
trajectory Xt, t \ 0, from knowledge of the law of the velocity field U and
the molecular diffusivity s. A slightly simpler goal is to determine the law
of the Lagrangian velocity process U(Xt, t), t \ 0, which is the particle’s
velocity under (1.1) or its drift under (1.2). (By contrast, U is called the
Eulerian velocity field.) Note that even determining the appropriate law for
U is nontrivial, however moving forward from a given law is an important
part of the larger problem.

The most widely applicable way to study particle motion in a random
velocity field is to repeatedly drop a particle into identically distributed
realizations of the velocity field, track it, and analyze the data statistically.
For example, Avellaneda et al., (1) Elliott and Majda, (8) and Carmona and
Cerou (4) have examined particle motion in numerical simulations of model
velocity fields with given laws. Similarly, Yeung and Pope (20) and Gotoh
et al. (11) have studied particle motion in numerical simulations of forced
Navier–Stokes turbulence. The same technique is used in physical flows,
for example in oceanography, where drifting instruments have been tracked
remotely to obtain approximate particle trajectories which can be used to
estimate the laws of Xt, t \ 0 and U(Xt, t), t \ 0 in the ocean; see the
review Davis (6) and references therein.

Statistical methods may be used to estimate numerical parameters of
the law of particle motion, but the estimates always have a margin of error
which makes it difficult to tell how small changes in the Eulerian law will
affect the Lagrangian law. Thus, for example, it is difficult to make or
refute conjectures about the Lagrangian law.
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There are several rigorous results concerning the asymptotic conver-
gence of the rescaled processes eXt/e

2, t \ 0 to Brownian motion as e Q 0;
among these are Bhattacharya, (3) Molchanov, (17) Carmona and Xu, (5) and
Fannjiang and Komorowski. (9, 10) These are known as homogenization
results from the original connection with partial differential equations;
indeed the mean concentration in these cases evolves according to an effec-
tive diffusion equation under a similar rescaling of space and time. Majda
and Kramer (16) give shear flow models for which the effective diffusivity
can be computed exactly.

A key ingredient in many homogenization results is that U is homo-
geneous, stationary, and divergence free. Under these conditions, the
Lagrangian velocity U(Xt, t), t \ 0 is strictly stationary for both (1.1) and
(1.2), as was shown by Lumley (15) and Zirbel. (22) Moreover, the generalized
Lagrangian velocity V defined by

V(x, t)=U(x+Xt, t), x ¥ Rd, t \ 0,(1.3)

is strictly stationary, as shown by Osada (18) for (1.2) and Zirbel (22) for (1.1)
and (1.2). The generalized Lagrangian velocity is the view of the whole
velocity field at time t from the location of the particle at time t.

When the Eulerian velocity field U is homogeneous and Markov in
time, the generalized Lagrangian velocity V is Markov, even when U is
divergent, cf. Zirbel. (21) Carmona and Xu (5) showed this in a case in which
U is, in addition, stationary, Gaussian, and divergence free. They and
Fannjiang and Komorowski (10) have computed the generator of V and have
obtained L2 rate of convergence results for functionals of V in terms of the
spectral gap of the Eulerian field, provided it is divergence free.

In the current paper, we introduce a large class of Eulerian velocity
fields U on the periodic lattice and in discrete time for which the law of the
generalized Lagrangian velocity V can be found explicitly in both incom-
pressible and compressible cases. Exact numerical calculations of Lagran-
gian statistics may be performed instead of simulations. Thus, one may
quickly check (or reject) conjectures numerically. The models are especially
well suited to studying the phenomenology of particle motion due to simple
fluid motifs such as localized vortices which move over time, as the
examples will show. The fundamental difficulty in continuous space and
time is the non–linear relationship between U and X. This is retained in the
discrete setting with analogues of (1.1) and (1.2); see (2.1) and (8.1). While
the discrete nature of the model might appear to be a limitation, we note
that numerical approximations of particle motion in both random and
Navier–Stokes velocity fields are necessarily discrete also, albeit with a very
fine lattice.
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When U is homogeneous and Markov in time, it can be described by
two parameters, the velocity field type I and the location L. Together
(I, L) forms a Markov chain. This observation forms the basis for the class
of velocity fields we introduce (Section 3). By choosing the state space of I to
be large enough, a very large class of Eulerian laws is allowed, including non–
Markov models and numerical simulations of Navier–Stokes turbulence.

The generalized Lagrangian velocity V has the same hidden Markov
structure as U, except that its location parameter M evolves differently
than L (Section 4). The transition matrix of (I, M) can be written in terms
of that of (I, L) in an elegant way. We give bounds on the rate of conver-
gence to equilibrium of (I, M) (and thus V) in Sections 5–7. The effect of
adding a discrete analogue of molecular diffusion is studied in Section 8.
Finally, homogenization of single particle motion in Zd is studied by
periodically repeating U throughout Zd (Section 9). Under the usual diffu-
sive scaling, this motion converges to Brownian motion in both incom-
pressible and compressible cases. We give an exact, computable formula for
the effective diffusivity and provide some numerical examples which show
that the effective diffusivity is increased by compressibility.

2. DISCRETE VELOCITY FIELDS

Particle motion on the lattice has become very familiar with the
various studies of Markov motion in a homogeneous random environment.
Our situation differs primarily in that the environment (the velocity field)
changes over time (it is not ‘‘quenched’’) and that it models particles
carried by a fluid rather than the molecular motion of systems of particles.
The recent papers on card shuffling (for example, Bayer and Diaconis (2))
also bear some similarity to our situation, with each shuffle moving all
particles (cards) incompressibly. The main difference is that successive
shuffles are independent, whereas we seek models in which the velocity
field exhibits strong dependence in time. Similar comments apply to
random transposition models; see Diaconis. (7)

Let us now turn to describing our situation. The spatial domain will
be D={0, 1,..., n1 − 1} × · · · × {0, 1,..., nd − 1}, which has n=n1n2 · · · nd

points. Addition of elements of D is done componentwise modulo the
numbers n1,..., nd, which we call addition modulo D. We think of D as a
lattice with periodic boundary conditions.

A velocity field u on D is a mapping from D to Zd. Figure 1 illustrates
two-dimensional discrete fields on successively finer grids which approxi-
mate a continuous velocity field. We denote by U the set of all velocity
fields on D. A random velocity field U is a stochastic process Ut, t=0, 1,...
taking values in U. A velocity field u in U generates a mapping a: D Q D
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by a(x)=x+u(x), x ¥ D. If a is a permutation on D, we say that u is
incompressible. This is the discrete–space analogue of a divergence–free
vector field. We denote by U0 the set of all incompressible vector fields.
A random velocity field U taking values in U0 is said to be incompressible,
otherwise it is called compressible.

The velocity field U is said to be homogeneous if, for all z in D, the
random velocity field Ũ defined by Ũt(x)=Ut(x+z), x ¥ D, t=0, 1,... has
the same distribution as U. In other words, the law of U is invariant under
spatial translation. The definition of stationarity is similar, but for tem-
poral translations.

The trajectory equation in discrete time with no molecular diffusion is

Xt+1=Xt+Ut(Xt), t=0, 1,...,(2.1)

Continuous velocity field

10 by 10 approximation 20 by 20 approximation

30 by 30 approximation

Fig. 1. Discrete approximations of a continuous velocity field
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with X0 fixed and using addition modulo D. Molecular diffusion is dis-
cussed in Section 8. The generalized Lagrangian velocity V is defined by

Vt(x)=Ut(x+Xt), x ¥ D, t=0, 1,...,(2.2)

which is the same as (1.3). Note that Xt=X0+; t − 1
s=0 Vs(0) for t=0, 1,...,

which is an additive functional of V. Also note that if U is homogeneous,
stationary, and incompressible, then V is strictly stationary, as in the
continuous case, cf. Zirbel. (22)

3. EULERIAN VELOCITY FIELDS WITH HIDDEN MARKOV

STRUCTURE

We now introduce the class of Eulerian velocity fields with hidden
Markov structure that will be considered in the remainder of the paper. Fix
m \ 1 and let I={1,..., m}. Let u: IQU, so that each i in I is associated
with a vector field u(i, · ) in U. We call u(1, · ),..., u(m, · ) vortex types. Let
It, t=0, 1,... be a Markov chain on I with transition matrix R. We assume
that this type process is irreducible and aperiodic. The distribution of I0 is
immaterial at this point.

For example, we may have d=2 and m=2 with u(1, · ) being a
clockwise vortex and u(2, · ) being an anticlockwise vortex as in Fig. 2.
Then u(It, x), t=0, 1,..., x ¥ D is a random velocity field which alternates
between clockwise and anticlockwise vortices over time.

Next, we allow the vortices to move in D, each in their own character-
istic way. For each i and j in I, let cij: D Q [0, 1] be a function for which
;x ¥ D cij(x)=1. For all types i, j and times t=0, 1,..., let At(i, j) be a
random variable taking values in D with P(At(i, j)=x)=cij(x), and,
moreover, let the collection A={At(i, j), i, j ¥ I, t=0, 1,...} be mutually
independent and independent of I. Let L0 be a random variable taking
values in D and independent of A and I. Define the location process
Lt, t=0, 1,... recursively by

Lt+1=Lt+At(It, It+1), t=0, 1,...,(3.1)

with addition modulo D. We must impose a mild condition on the cij to
guarantee that for all t large enough, the distribution of Lt is supported on
all of D. We require that there be a sequence i1, i2,..., iN of types for which
Ri1i2

,..., RiN − 1iN
> 0 and the distribution of A1(i1, i2)+ · · · +AN − 1(iN − 1, iN)

is supported on all of D, since by irreducibility of R, the type process I will
make all of these transitions at some point.
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Fig. 2. Four vortices

It is clear that the paired process (It, Lt), t=0, 1,... is an aperiodic,
irreducible Markov chain. Now define the velocity field U by

Ut(x)=u(It, x − Lt), t=0, 1,... .(3.2)

Note that U is not Markov in general, but will be Markov if knowledge of
Ut allows one to uniquely determine It and Lt. The process Ut, t=0, 1,...
will be homogeneous if the initial location L0 is uniformly distributed
on D. It will be stationary if, in addition, I0 has the invariant distribution
for R. It can be shown that, if U is homogeneous and Markov, then U can
be written as in (3.2). Thus, this construction generalizes the case of
homogeneous Markov velocity fields.

We now compute the transition matrix P of (I, L) for later use. First,
note that

P((i, y); (j, z))=P(Lt+1 − Lt=z − y | It+1=j, It=i)

× P(It+1=j | It=i)=cij(z − y) Rij.

For each i, j in I, define a matrix Cij by Cij(y, z)=cij(z − y), y, z ¥ D.
Note that Cij is doubly indexed by D and is doubly stochastic. When D is
one-dimensional, Cij is a circulant matrix. In higher–dimensions, Cij is
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more awkward to write out as a conventional matrix, but it still has the
analogue of the circulant property, which is closely related to homogeneity.
Now we may write P in block form:

P=[RijCij]=r R11C11 · · · R1mC1m

x x

Rm1Cm1 · · · RmmCmm

s .(3.3)

We think of the blocks as being indexed by type, with type transitions
given by the Rij. Once the type transition is made, the appropriate circulant
matrix Cij is used to determine the transition of the location.

4. THE LAW OF THE GENERALIZED LAGRANGIAN VELOCITY

The generalized Lagrangian velocity V can be written in terms of the
vortex type It, the vortex location Lt, and the particle position Xt as
Vt(x)=u(It, x − (Lt − Xt)). Define the Lagrangian location process M by
Mt=Lt − Xt, t=0, 1,... . A short calculation shows that M evolves
according to

Mt+1=s(It, Mt)+At(It, It+1), t=0, 1,...,(4.1)

where for each i in I, we define s(i, · ): D Q D by s(i, x)=x − u(i, −x),
x ¥ D. Note that s(i, · ) is a permutation if and only if u(i, · ) is incompressible.

It is clear that the paired process (I, M) is Markov. Thus, the Eulerian
and generalized Lagrangian velocity processes have very similar structure:
they are obtained in the same way from Markov chains (I, L) and (I, M),
respectively, and the type process I is the same in both cases. The only dif-
ference is that the Lagrangian location Mt undergoes a ‘‘shuffle’’ s(It, · )
before it is shifted by A, to account for the change of perspective brought
about by the motion of the particle, while the Eulerian location Lt is just
shifted.

We now find the transition matrix Q of (I, M). First, M makes a
deterministic transition m Q s(i, m) according to the current value of It.
This may be represented by a block diagonal matrix S:

S=rS1 · · · 0
x z x

0 · · · Sm

s ,(4.2)

where Si is the transition matrix corresponding to s(i, · ). That is, Si(x, y)
equals 1 if y=s(i, x) and is 0 otherwise. The off–diagonal blocks of S are
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zero because only the location changes at this step. The transition given by
S is followed by a transition of I and the addition of At(It, It+1), which is
accomplished by P. Thus, we have the very simple formula Q=SP for the
relation between the transition matrix P underlying the Eulerian velocity
field and the transition matrix Q underlying the Lagrangian field.

When the Eulerian velocity field U is incompressible, the matrices Si

and S are permutation matrices. Thus, Q=SP is obtained by permuting
rows of P within each block according to the velocity field corresponding
to that block. When U is compressible, at least one Si is not a permutation
matrix, and at least one row of P appears twice in Q. As we shall see, this
has many consequences for the law of V and makes this case more difficult
than the incompressible case.

Note that we have found the exact law of the generalized Lagrangian
velocity V in terms of the law of the Eulerian velocity field U. Moreover,
since the particle position X satisfies Xt=X0+; t − 1

s=0 u(Is, −Ms), it is an
additive functional of the Markov chain (I, M), and so, in principle, its law
is known.

5. EIGENVECTORS OF P AND Q

Here we begin the study of the eigenvectors and eigenvalues of the
transition matrices P and Q underlying U and V in order to understand
their rates of convergence to equilibrium. The rows and columns of P, S,
and Q are indexed by type i ¥ I and location x ¥ D. They are functions f
from I× D to C, which can be thought of as vectors in Cmn. For b in
Cm and c in CD, we will write f=b é c for the Kronecker product
f(i, x)=bic(x), where b1,..., bm are the components of b. Note that b é c
may denote either a row or a column vector; which it is will be clear from
the context. We denote by 1 the vector in CD with all components equal
to 1.

Let p denote the invariant distribution of the type transition matrix R.
Because the Cij are doubly stochastic, (p é 1) P=(p é 1), so that under
the invariant distribution 1

n (p é 1), the type It is independent of the
Eulerian location Lt, which is uniformly distributed on D. Moreover, in the
incompressible case, the matrix S is a permutation matrix, and so p é 1 is
also the invariant distribution for Q, so the same comments apply to
(I, M). In particular, when the Eulerian parameters (I, L) are started in
the invariant distribution, both the Eulerian and generalized Lagrangian
velocity are stationary with the same invariant distribution. The same is
true in general, cf. Zirbel. (22) However, in the compressible case, p é 1 fails
to be invariant for Q because S is no longer doubly stochastic. The
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invariant type distribution is still p, but the Lagrangian location parameter
M is now dependent on the type under the invariant distribution.

Vectors of the form b é 1 may also be right eigenvectors, for

P(b é 1)=Q(b é 1)=(Rb) é 1,(5.1)

in both the incompressible and compressible cases. Thus, if b is an eigen-
vector of R, then b é 1 is an eigenvector of both P and Q with the same
eigenvalue as b has for R. Consider the set G={b é 1 : b ¥ Cm}. The
following result shows that in the incompressible case, the eigenvectors
of Q split naturally over G and its orthogonal complement H=
{h ¥ Cmn : ggh=0 for all g ¥ G}, where * denotes conjugate transpose. It is
useful to think of G as the set of vectors which are constant on blocks and
of H as the set of vectors which sum to zero on each block.

5.2. Proposition. Suppose that S is a permutation matrix of the
form (4.2) and that Q=SP is diagonalizable. Then a basis of eigenvectors
of Q can be chosen so that each is either an element of H or of the form
b é 1 where b is a right eigenvector of R. Moreover, Q can be written as the
direct sum of its restrictions to G and H.

Proof. Equation (5.1) shows that QG ı G. We claim that QH ı H

as well. Let h ¥ H and g=b é 1 ¥ G. We must show that ggQh=0. But
ggQh=ggSPh, and ggS=gg because S is a permutation matrix of the form
(4.2). Moreover, ggP=((bgR)g é 1)g, and so ggPh=0. Thus, QH ı H.
This establishes the last claim of the proposition.

Now let {f(j)} be a basis for Cmn consisting of eigenvectors of Q with
eigenvalues m (j). We may write f (j)=g (j)+h (j) where g (j) ¥ G and h (j) ¥ H.
Because QG ı G and QH ı H, we have that Qg(j)=m (j)g (j) and Qh (j)=
m (j)h (j). From among the g (j) we may choose a basis for G, and from the
h (j) a basis for H, which gives the basis claimed.

Finally, each g (j) chosen may be written in the form b é 1. The equa-
tion Qg=lg becomes (Rb) é 1=(lb) é 1 by (5.1), and so b must be an
eigenvector of R, as claimed. L

The eigenvectors of P are related to the eigenvectors of circulant
matrices. Let c: D Q C and define a matrix C doubly–indexed by D by
C(y, z)=c(z − y), y, z ¥ D. We say that C is circulant by extension of the
case d=1. For each k in D define a vector f (k) in CD by f (k)(x)=
exp(2pik · x)/ `n , x ¥ D, where n=n1n2 · · · nd and the inner product is
defined by k · x=k1x1/n1+ · · · +kdxd/nd. The vectors f (k) are the standard
Fourier basis. They are orthonormal, f (k)gf (a)=dka, k, a ¥ D, and for each k
in D, f (k) is an eigenvector of C with eigenvalue l (k)=`n cTf (k).
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The eigenvectors of P split over a large number of mutually orthogonal
subspaces, as the next result will show. It is an extension of Proposition 5.1
for the case S=I. For each k in D, let G (k) be the space {b é f (k) :
b ¥ Cm}. These spaces are then mutually orthogonal and G0=G from
above. Let l (k)

ij denote the eigenvalue of Cij corresponding to f (k). For each
k in D, let R (k) be the matrix R (k)=[Rijl

(k)
ij ], and note that R (0)=nR.

5.3. Proposition. Suppose that P is diagonalizable. Then the
eigenvectors of P are b (i, k) é f (k), i ¥ I, k ¥ D where b (i, k), i ¥ I are the
eigenvectors of R (k).

Proof. A simple computation similar to (5.1) shows that P(b é f (k))
=(R(k)b) é f (k). Thus, for each k in D, PG (k) ı G (k). We now proceed as in
the proof of Proposition 5.1 to select a basis b (i, k) é f (k), i ¥ I of eigen-
vectors of P for each subspace G (k) and recognize that the b (i, k) must be
eigenvectors of R (k). L

6. ABSOLUTE BOUND ON EIGENVALUES

The moduli of eigenvectors determine the rate of convergence to equi-
librium for Markov chains. As shown in (5.1), the matrices P and Q share
eigenvectors of the form b é 1, where b is an eigenvector of R. These
eigenvalues depend only on type transitions and not on the velocity fields
encoded in S, so they are of relatively little interest. By Proposition 5.2, in
the incompressible case, the remaining eigenvalues correspond to eigen-
vectors which lie entirely in H. As our techniques work only for such
eigenvectors, we restrict attention to the incompressible case. If M is a
diagonalizable matrix, we denote by eig1(M) the largest of the moduli of
the eigenvalues of M and the second largest by eig2(M). Similarly, we write
eig1(M, L) for the largest eigenvalue modulus among eigenvectors in the
subspace L.

6.1. Theorem. Suppose that S is a permutation matrix and that Q=
SP is diagonalizable. Then eig1(Q, H) [ eig1(T), where T=[Rijeig2(Cij)]
is an m × m matrix.

Proof. Let h ¥ H be an eigenvector of Q with eigenvalue m. Writing
hi for the blocks of h, the equation Qh=mh becomes ;m

j=1 RijSiCijhj

=mhi, i=1,..., m. Fix i. Noting that the CD vector norm is invariant under
the permutation matrix Si, we obtain

|m| ||hi ||=>C
m

j=1
RijCijhj

> [ C
m

j=1
Rij ||Cijhj ||,(6.2)
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by the triangle inequality. Now h is in H and so, in particular, h is
orthogonal to ej é 1 where ej is the jth standard basis vector for Cm. Thus,
1Thj=0, and so hj is orthogonal to f (0). Writing hj as a linear combination
of the f (k), k ] 0, we see that

||Cijhj ||2= C
k ] 0

|f (k)ghj |2 |l (k)
ij |2 [ eig2(Cij)2 ||hj ||2.(6.3)

Using this in (6.2) yields |m| ||hi || [ ;m
j=1 Tij ||hj ||. Now T has non–negative

entries, so by a corollary of the Perron–Frobenius Theorem (cf. Theorem
15.5.1 of Lancaster and Tismenetsky (14)), T has a left eigenvector a with
non–negative entries and a positive real eigenvalue equal to eig1(T).
Multiplying |m| ||hi || by ai and summing over i yields

|m| C
m

i=1
ai ||hi || [ C

m

j=1
C
m

i=1
aiTij ||hj ||= C

m

j=1
eig1(T) aj ||hj ||,(6.4)

from which we conclude |m| [ eig1(T). L

7. RELATIVE BOUNDS ON EIGENVALUES

For non–divergent random velocity fields in continuous space and
time, Fannjiang and Komorowski (10) have shown that the spectral gap of
the generalized Lagrangian velocity exceeds that of the Eulerian velocity, so
that the Lagrangian velocity converges to equilibrium at least as quickly as
the Eulerian. Surprisingly, in discrete space and time, one can find coun-
terexamples to this behavior. In this section we give a simple counter-
example and then identify two conditions on the Eulerian velocity field
which are sufficient to guarantee that eig1(Q, H) [ eig1(P, H), meaning
that the generalized Lagrangian velocity V converges to equilibrium at least
as fast as U.

7.1. Example. Consider the one-dimensional velocity fields u(1, · )=
[1 − 2 0 0 0 0 1] and u(2, · )=[ − 1 − 1 0 0 0 0 2]. The type I makes
transitions according to the transition matrix R=[0.8 0.2

0.2 0.8]. Given the type
transition, the vortex location L makes transitions according to circulant
matrices Cij whose first rows are given by

c11=[0.2 0.75 0 0 0 0 0.05]

c12=c21=[1 0 0 0 0 0 0]

c22=[0.2 0.05 0 0 0 0 0.75]
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Then we find eig1(P, H)=0.6813 and yet eig1(Q, H)=0.8455. However,
if we interchange c11 and c22, then eig1(P, H)=0.6813 and eig1(Q, H)=
0.6546. L

7.2. Proposition. Suppose that U is incompressible, Cij=C for all
i, j in I and that R is diagonalizable. Then eig1(Q, H) [ eig1(P, H).

Proof. Let b (i), i=1,..., m denote the eigenvectors of R and r (i) the
corresponding eigenvalues. Recalling the definition of R (k), we have
R (k)=[Rijl

(k)]=l (k)R, and so the b (i) are also the eigenvectors of R (k). The
eigenvectors of P are thus of the form b (i) é f (k) and the corresponding
eigenvalues are r (i)l (k). The eigenvalues over H correspond to k ] 0, and
the largest of these occurs when r (i)=1 and |l (k)|=eig2(C). Thus
eig1(P, H)=eig2(C). In the current case, T=[Rij eig2(C)]=eig2(C) R,
and so eig1(T)=eig2(C). Theorem 6.1 gives eig1(Q, H) [ eig1(T)=
eig2(C)=eig1(P, H), which is the desired result. L

7.3. Remark. Equations (3.1) and (4.1) become, in the present case,
Lt+1=Lt+At and Mt+1=s(It, Mt)+At. We have written At in place of
At(It, It+1) because the law of At(i, j) does not depend on i and j when
Cij=C. It is clear that the processes I and L evolve independently. These
equations can be thought of as describing the motion of a particle L
undergoing diffusion and a particle M subject to diffusion and incom-
pressible advection. The advecting velocity field Wt(x)=s(It, x) − x need
not be homogeneous, and can be made to have virtually any law by suit-
ably enlarging the state space of I.

Now L is Markov but M alone is not. For a proper comparison of
their rates of convergence to equilibrium we compare the Markov chains
(I, L) and (I, M). The eigenvalues over H are germane to the rate of con-
vergence of the distributions of L and M to the uniform distribution, and
Proposition 7.2 concludes that eig1(Q, H) [ eig1(P, H), which means that
diffusion plus incompressible advection makes particle location converge to
uniform more quickly than diffusion alone. The analogue for motion on Zd

or Rd is that the effective diffusivity exceeds the molecular diffusivity;
cf. Isichenko (12), Eq. (4.16). i

Next, we will assume that the Eulerian velocity field is incompressible
and reversible and show that eig1(Q, H) [ eig1(P, H). The inspiration for
this case is Section 2 of Carmona and Xu, (5) where the Eulerian velocity
field is incompressible, Markov, and reversible.

As in Section 5, let p be the invariant distribution of the type process
I, so that 1

n (p é 1) is the invariant distribution of (I, L). Note that the
components of p are non–zero. Set P=diag(p é 1). The Markov chain
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(It, Lt), t=0, 1,... is reversible if PP is symmetric; then the law of U is
invariant under time reversal.

Reversibility puts rather severe restrictions on U. The ij block of PP
is piRijCij. Symmetry of PP requires the matrix equation piRijCij=
pjRjiC

T
ji to be satisfied. Since Cij (and hence Cji) is doubly stochastic,

summing across the first row yields piRij=pjRji. But then we must also
have Cij=CT

ji. Thus, when (I, L) is reversible, the type process I must be
reversible and the motion of the velocity fields must satisfy Cij=CT

ji. One
effect of this is that, when type i is followed by type i, the location must
make a transition according to a symmetric circulant matrix Cii. This
prevents preferential drift in any direction for type i.

7.4. Proposition. Suppose U is incompressible and that (I, L) is
reversible. Then eig1(Q, H) [ eig1(P, H).

Proof. For vectors f and g in Cmn, define an inner product by
Of, gPP=fgPg, where * denotes conjugate transpose. The inner product
induces a norm by ||f||2

P=Of, fPP=;m
i=1 pi ||f(i, · )||2. Because S is a

permutation matrix with block diagonal form (4.2), it does not change the
norms of the blocks f(i, · ), and so ||Sf||P=||f||P for all f in Cmn.

Let h ¥ H be an eigenvector of Q with eigenvalue m. Then

|m|||h||P=||mh||P=||Qh||P=||SPh||P=||Ph||P(7.5)

by the preceding paragraph. An easy computation shows that P is
self–adjoint with respect to the inner product O · , ·PP. Also, by the proof of
Proposition 5.2, P preserves the subspace H, and so its restriction to H is
self–adjoint. Thus, by the spectral theorem, there exists a basis for H

consisting of eigenvectors of P, and these eigenvectors are orthonormal.
A standard argument (cf. (6.3)) shows that ||Ph ||P [ eig1(P, H) ||h||P.
Combining this with (7.5) yields |m| [ eig1(P, H), which was to be
shown. L

8. MOLECULAR DIFFUSION

In this section we see that molecular diffusivity directly reduces
the bounds found in the previous sections. The analogue of motion with
diffusion is

Xt+1=Xt+Ut(Xt)+Dt, t=0, 1,...,(8.1)

where D0, D1,... are independent, identically distributed random variables
taking values in Zd, and independent of U. The common distribution of Dt
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is given by a function d0 on D. The strength of the diffusion can be
controlled by concentrating d0 around 0 or not.

Note that (8.1) is identical to the numerical implementation of the
Euler scheme for simulating the solution of a stochastic differential equa-
tion with Brownian noise, except that we are working on a coarse lattice
rather than a lattice of machine–precision numbers.

The diffusion does not affect the Eulerian velocity field U, but it does
affect the generalized Lagrangian velocity: Eq. (4.1) for the Lagrangian
location parameter becomes

Mt+1=s(It, Mt)+Dt+At(It, It+1), t=0, 1,... .(8.2)

It is easy to see that (I, M) is still Markov. Its transition matrix QD can be
written as

QD=SDP,(8.3)

where D is a block diagonal matrix with each diagonal block equal to the
circulant matrix D0(y, z)=d0(z − y). Note that in the degenerate case in
which Dt=0 with probability 1, D reduces to the identity matrix and (8.3)
reduces to Q=SP as in Section 4.

The presence of diffusion modifies the absolute bound on eigenvalues
for incompressible velocity fields in the following way. The product DP is a
block matrix of the form [RijD0Cij], and so in Theorem 6.1 we may replace
Cij by D0Cij. As D0 and Cij are both circulant, they have the same eigen-
vectors. Denoting the eigenvalues of D0 and Cij by d (k) and l (k)

ij , the eigen-
values of D0Cij are equal to d (k) · l (k)

ij , k ¥ D. Then T can be replaced
by (TD)ij=Rij max(|d (k) · l (k)

ij |, k ] 0), and the bound of Theorem 6.1
reads eig1(QD, H) [ eig1(TD). In particular, we have (TD)ij [ Rij eig2(D0)
eig2(Cij), from which,

eig1(QD, H) [ eig1(TD) [ eig2(D0) eig1(T) [ eig2(D0).(8.4)

The second inequality shows a reduction in the absolute bound on eigen-
values due to diffusion, and the third shows an absolute bound which
depends solely on the molecular diffusion.

While the presence of diffusion lowers the eigenvalue bound eig1(TD),
in specific instances it can be shown to increase eig1(QD, H). That is, in
some cases we may have eig1(SP, H) < eig1(SDP, H). In such cases, the
addition of diffusion slows the convergence of the Lagrangian location
parameter M to its equilibrium distribution.
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8.5. Example. Diffusion slows convergence. Consider again the
velocity fields of Example 7.1. Let I make transitions according to R=
[1/2

2/3
1/2
1/3]. Let the first rows of Cij be

c11=[0.262 0.143 0.037 0 0.098 0.162 0.298]

c12=[0.275 0.184 0.042 0 0.035 0.189 0.275]

c21=[0.099 0.211 0.104 0 0.106 0.132 0.348]

c22=[0.166 0.237 0.113 0 0.147 0.158 0.179],

and let the distribution of diffusion be given by d0=[0.5 0.25 0 0 0 0 0.25].
Then we find eig1(SP, H)=0.1623 and yet eig1(SDP, H)=0.2201, so
that the addition of diffusion slows convergence to equilibrium. L

Finally, let us consider the results of Section 7 in the presence of dif-
fusion. The case Cij=C is already closely connected with diffusion; we
simply replace C by D0C. The only change is that now Proposition 7.2 may
conclude with the stronger inequality eig1(QD, H) [ eig2(D0) eig1(P, H)
using (8.4). In the reversible case, the argument of Proposition 7.4 carries
through once we note that ||DPh||2

P=;m
i=1 pi ||D0(Ph)i ||2 [ eig2(D0)2 ||Ph||2

P,
using an argument similar to (6.2). Again we conclude that eig1(QD, H) [

eig2(D0) eig1(P, H).

9. HOMOGENIZATION AND EFFECTIVE DIFFUSIVITY

Repeat the velocity field U periodically throughout Zd and let Y move
in this velocity field according to Yt+1=Yt+Ut(Yt mod D)+Dt, t=0, 1,...,
where the addition is no longer modulo D. We will see that Y converges to
Brownian motion upon rescaling space and time in the usual way, and we
will compute the limiting diffusion coefficient exactly in terms of the law of
the Eulerian velocity field and the distribution of the diffusion. The result
holds for both compressible and incompressible cases.

If we set Y0=0 and Xt=Yt mod D, then X and the type–location
process (I, M) evolve as in Section 8. Then Y evolves according to,

Yt+1=Yt+u(It, −Mt)+Dt, t=0, 1,... .(9.1)

The process (I, M, D) is Markov and Y is an additive functional of it. As
such, we expect that Y will converge to Brownian motion when properly
scaled. More importantly, the limiting diffusivity can be expressed in terms
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of the transition matrix QD of (I, M) and the covariance of D, rather than
using the much larger transition matrix of (I, M, D).

Let p be the invariant distribution corresponding to the transition
matrix QD of (8.3). Let pu=; i, m p(i, m) u(i, −m) be the mean drift due to
U and ED=; a ¥ Z

d d0(a) a be the mean drift due to the diffusion. For
t=0, 1,..., let Zt=Yt − (pu+ED) t and for non–integer t define Zt by linear
interpolation. Finally, define an inner product for functions from I× D to
R by Of, gPp=; i, m p(i, m) f(i, m) g(i, m).

9.2. Theorem. Suppose that QD is irreducible and aperiodic. Then
as e Q 0, the processes eZt/e

2, t \ 0 converge in distribution to d-dimen-
sional Brownian motion with zero drift and covariance matrix b given by

bka=−Ofk, faPp −Ofk, gaPp −Ogk, faPp

+Cov(Dk, Da) −O1, SDkPga+SDaPgkPp,(9.3)

where f: I× D Q Rd is given by f(i, m)=u(i, −m) − pu, gk is the solution
of

(I − QD) gk=−fk, k=1,..., d(9.4)

and Dk is the matrix Dk=; a ¥ Z
d d0(a)(ak − E Dk) Sa. For each a in Zd, Sa

is the transition matrix on I× D corresponding to the addition of a to the
second component modulo D.

9.5. Remark. The first three terms in (9.3) reflect the limiting
covariance of ; t − 1

s=0 u(Is, −Ms), the fourth comes straight from molecular
diffusion, and the last term reflects an interaction between diffusion and
advection. In the absence of molecular diffusion, bka=−Ofk, faPp −
Ofk, gaPp −Ogk, faPp and gk satisfies (I − Q) gk=−fk, cf. (9.7). i

Proof. By (9.1), at integer times, Zt=; t − 1
s=0 f̂(Is, Ms, Ds), where f̂ is

defined by f̂(i, m, a)=f(i, m)+m(a), with m(a)=a − ED. The process
(I, M, D) is a Markov chain with transition matrix Q̂ given by

Q̂(i, m, a; j, n, b)=Rij · Cij(n − s(i, m) − a) · d0(b).(9.6)

This chain has state space I× D × support(d0) and is irreducible aperiodic
because QD is irreducible aperiodic and the value of D is chosen indepen-
dently at each step. The invariant distribution p̂ of (I, M, D) satisfies
p̂(i, m, a)=p(i, m) d0(a).
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Note that the mean of f̂ under p̂ is zero. Thus, for each k=1,..., d,
the equation (I − Q̂)ĝk=−f̂k has a solution, as will be explained below. By
Theorem VIII.3.74 of Jacod and Shiryaev, (13) the processes eZt/e

2, t \ 0
converge in distribution as e Q 0 to a Brownian motion with zero drift and
covariance matrix b given by

bka=−Of̂k, f̂aPp̂ −Of̂k, ĝaPp̂ −Oĝk, f̂aPp̂, k, a=1,..., d.(9.7)

The inner product here is analogous to O · , ·Pp defined before the theorem.
To be precise, Jacod and Shiryaev (13) establish (9.7) for k=a, but it may be
checked for k ] a by consideration of the additive functional based on
f̂k+f̂a and polarization.

We now compute ĝ and b in terms of the smaller matrices P, S, QD,
and Sa. The solution of (I − Q̂) ĝk=−f̂k is ĝk=−;.

n=0 Q̂nf̂k, which con-
verges because p̂f̂=0 and Q̂ is irreducible aperiodic. Now Q̂nm=0 for
n=1, 2,..., so we have ĝk=−mk − ;.

n=0 Q̂nfk, where we think of f as a
function of i, m, and a, although it does not really depend on a. The
infinite sum defining ĝk may be written

C
.

n=0
(Q̂nfk)(i, m, a)=f(i, m)+ C

.

n=1
E[fk(In, Mn) | I0=i, M0=m, D0=a].

The influence of D0 does not last long. It only affects the value of M1, since
D1 is independent of (I0, M0, D0). After time 1, (I, M) evolves exactly as in
Section 8, with transition matrix QD, and we may ignore the value of D.
For the first step, note that from (8.2), M1=s(i, m)+a+A0(i, I1), so that
the first transition of (I, M) is according to the matrix SSaP, where Sa

corresponds to the deterministic addition of a modulo D. Thus,

E[fk(In, Mn) | I0=i, M0=m, D0=a]=(SSaPQn − 1
D fk)(i, m),

where we have returned to regarding f as a function of i and m alone. By
changing the index of summation, we obtain

ĝk( · , · , a)=−mk − fk − SSaP C
.

n=0
Qn

Dfk=−mk − fk+SSaPgk,(9.8)

where gk satisfies (9.4). Finally, we simplify terms in (9.7). Because
; a ¥ Z

d d0(a) m(a)=0,

Of̂k, f̂aPp̂=Ofk, faPp+Cov(Dk, D l).(9.9)
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Next, from (9.8), Of̂k, ĝaPp̂ equals

C
i, m, a

p(i, m) d0(a)(fk(i, m)+mk(a))(−ma(a) − fa(i, m)+(SSaPga)(i, m))

= −Ofk, faPp+C
i, m

p(i, m) fk(i, m)(QD ga)(i, m)

− Cov(Dk, D l)+C
i, m

p(i, m)(SDkPga)(i, m)

=Ofk, gaPp − Cov(Dk, D l)+O1, SDkPgaPp,

using QD ga=fa+ga from (9.4). Combining this and (9.9) into (9.7) yields
(9.3). L

9.10. Example. Numerical examples of effective diffusivity. Con-
sider a velocity field having two vortex types, u(1, · ) and u(2, · ). Switch
types according to R=[0.8

0.2
0.2
0.8], so that typically each vortex type is used for

a few steps, then the other, and back again. Define the matrix C11 so that
vortex 1 moves up and to the right, specifically, with probabilities 0.3 (right
one), 0.3 (up one), 0.2 (up one and right one), 0.2 (do not move). Define
the matrix C22 so that vortex 2 moves down and to the right, specifically,
with probabilities 0.3 (right one), 0.3 (down one), 0.2 (down one and right
one), 0.2 (do not move).

The second largest eigenvalue modulus of the Eulerian velocity does
not depend on the vortex types used. The value is 0.9051 for this Eulerian
velocity field.

To generate several examples, u(1, · ) and u(2, · ) will be chosen from
among the four vortex types shown in Fig. 2. The first letter stands for
Incompressible or Compressible, the second for Clockwise or Anti-
clockwise.

Letting u(1, · )=IC and u(2, · )=IA, the Lagrangian velocity has
second largest eigenvalue modulus 0.8532, indicating that it converges to
equilibrium more quickly than the Eulerian velocity field. This will be the
case for all the examples here. The Lagrangian drift pu is zero, while the
effective diffusivity matrix is b=[0.1470

0.0000
0.0000
0.1550]. This is the smallest effective

diffusivity among these five examples.
Letting u(1, · )=IC and u(2, · )=IC, the Lagrangian velocity has

second largest eigenvalue modulus 0.8197. The Lagrangian drift pu is zero,
while the effective diffusivity matrix is b=[0.3038

0.0000
0.0000
0.2081]. Here, the vortex has

momentum either up and to the right, or down and to the left, because it
continues several steps in one direction before switching to the other direc-
tion. This roughly doubles the diffusivity.
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Letting u(1, · )=IC and u(2, · )=CC, so one of the vortex types is
compressible, the Lagrangian velocity has second largest eigenvalue
modulus 0.8197. The Lagrangian drift pu is [0.0769 − 0.0006], while the
effective diffusivity matrix is b=[ 0.4586

− 0.1455
− 0.1455

0.3581]. Compressible fields may
have non–zero drift. Note that the diffusivity has increased compared to
the incompressible examples.

Letting u(1, · )=CC and u(2, · )=CA, the Lagrangian velocity has
second largest eigenvalue modulus 0.8524. The Lagrangian drift pu is
[0.1880 0.0000], while the effective diffusivity matrix is b=[0.6818

0.0000
0.0000
0.6067].

Letting u(1, · )=CA and u(2, · )=CA, the Lagrangian velocity has second
largest eigenvalue modulus 0.8558. The Lagrangian drift pu is [0.2109
− 0.0169], while the effective diffusivity matrix is b=[0.6871

0.0595
0.0595
0.5622]. Using

two compressible vortex types gives the largest effective diffusivity. i
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